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Abstract

Ablation of carbon-based materials is a key issue in atmospheric reentry; it displays a strong coupling between mass,

momentum and heat transfers, the importance of which relies on the surface roughness. A new possible physical cause

for roughness set-up is investigated, based on the coupling between diffusive transfer in the surrounding fluid on one

hand, and heterogeneous reaction or sublimation on the other. Considering mass transfer in a 2D, isothermal, verti-

cal-flux approximation, the surface is proved to be able to acquire, among others, a stable stationary morphology made

of circle arcs connected by symmetrical singular points. Such a morphology has indeed been observed in the case of

graphite ablation, and the computed roughness length scale, arising from the diffusion-to-reaction ratio, is compatible

with observed data. A similar model based on the presence of a thermal gradient yields similar results, but with a larger

length scale, also compatible with other observations.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Carbon/carbon (C/C) composites are the almost

unique class of thermostructural materials that are

used as thermal protection of atmospheric reentry

bodies. Indeed, the local conditions are dramatically
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severe: temperatures up to 4500 K and pressures ranging

between 0.1 and 100 bars, and a heat flux received by the

protection ranging from 0.1 to 500 MW m�2. In such

conditions, a non-negligible part of the heat flux is

consumed by interfacial mass transfer, which has two

principal forms: oxidation (and other chemical reac-

tions) and sublimation. These phenomena are grouped

under the generic name of ablation [1]. Their particular-

ity is to display a strong coupling with many other

physical phenomena, namely fluid flow and heat

transfer.

The surface roughness related to the ablation

phenomena of the atmospheric reentry body thermal
ed.
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Nomenclature

C gas-phase concentration, mol m�3

hci root-mean-square molecular velocity, m s�1

D diffusion coefficient, m2 s�1

Da Damköhler number

Ea activation energy, J mol�1

H Hamiltonian operator, m s�1

h height from upper domain limit, m

h0 reference height, m

ImðxÞ imaginary part of a complex number

J mole flux, mol m�2 s�1

k heterogeneous reaction coefficient, m s�1

k wave vector of a perturbation, m�1

M position of a surface point, m

M molar mass, kg mol�1

n normal vector of the interface

p pressure, Pa

q negative normal velocity amplitude, m s�1

q0 heat flux, W m�2

R mole ablation rate per unit surface,

mol m�2s�1

ReðxÞ real part of a complex number

S function allowing to define the surface as an

isosurface, m

T temperature, K

t time, s

V global ablation velocity, m s�1

W velocity of a point of the surface, m s�1

x lateral space coordinate, m

y lateral space coordinate, m

z vertical space coordinate, m

Greek symbols

a sticking coefficient

CW graph of W

c Knudsen–Langmuir parameter

ca scaled activation energy

cfs fluid–solid interface energy, J m�2

d Perturbation

g position of the diffusive boundary layer top,

m

j curvature, m�1

k dimensionless width

k0 thermal conductivity, W m�1 K�1

m stoichiometric factor

R segment

h tilt angle of the surface at current point, rad

h0 critical tilt angle for CW, rad

s time scale factor, s

v molar volume, m3 mol�1

/ angle between the normal to the surface and

the flux, rad

x time pulsation of a perturbation, s�1

Subscripts and superscripts

•g relative to a gas-phase species

•s relative to a solid phase

•0 reference quantity

•+ relative to the right-hand side of a singular

point

•� relative to the left-hand side of a singular

pointe� dimensionless variable

• 0 relative to a moving coordinate frame

�� relative to equilibrium or stationarity

Constants

k�B 1.3806581 · 10�23 J K�1: Boltzmann�s con-

stant

N 6.02213674 · 1023 mole�1: Avogadro�s num-

ber

R 8.3145107 J mole�1 K�1: perfect gas con-

stant
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protections has considerable consequences. It is able to

promote a laminar-to-turbulent regime transition [2,3],

a fact which induces a strong enhancement of heat and

mass exchanges between the protection wall and the

surrounding environment. It has been experimentally

observed that the heat flux may be multiplied by a fac-

tor up to three in turbulent regime [4]. The conse-

quences on the surface temperature and heat-affected

zone depth are obvious, as well as on the overall abla-

tion velocity.

However, little is known of the creation mechanisms

of such a surface state, which results from a strong cou-

pling between the material and the surrounding flow.

The aim of this work is to set-up and use simple models
of interaction, involving the least possible phenomena at

first, that is, merely the heterogeneous reaction and mass

transport from the flowing fluid.

The first question that one can ask about material/

fluid interaction is: what is the relation between the sur-

face morphology and the underlying physico-chemical

phenomena? This question has been dealt with in

numerous works on CVD (Chemical Vapor Deposition)

[5–9], which is closely related to ablation, the difference

being the sign of the wall velocity. Palmer and Gordon

[6,7] have found out by linear perturbation theory and

by numerical simulation that at flat surface may be

destabilized by gas-phase diffusion tangent to the

surface, while surface diffusion had the opposite effect.



Fig. 2. SEMmicrograph of an ablated C/C sample (ex-phenolic

resin/carbon composite).
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Another analytical approach [8] focused on the modifi-

cation of the local growth rate due to curvature, and a

competition of such an effect with surface diffusion:

the result is that wavy surface may develop. Thiart

et al. [9] have developed efficient numerical tools for

the simulation of CVD growth in various conditions

and have shown that ‘‘fingering’’ appears in the case

of diffusion-limited growth, a fact that has been con-

firmed by linear stability analysis [5,9].

In the case of graphite ablation, experimental deter-

minations of the roughness have been performed by pro-

filometry, using well-defined flow conditions and heat

transfer rates [10]. In some experimental conditions for

which the flow is laminar (Fig. 1a), the surface of a poly-

crystalline graphite looks smooth up to a few lm resolu-

tion. The apparent roughness seems to rely only on the

material heterogeneity, which is known to contain small

domains of better crystallinity than the surrounding

matter. Roughness here may only be the result of the

material heterogeneity (variations of the density and

local heterogeneous kinetic constant): this issue will be

addressed in the following parts, mostly in the case of

carbon/carbon (C/C) composites, which are made of dif-

ferent types of carbon. An example is given at Fig. 2: in

a composite the matrix of which is made of a very low-

density (and high-reactivity) carbon, the fibers, which

are more resistant, are salient with respect to the matrix,

and acquire an ogival shape. In a composite, the space

scales are related to the individual fiber diameter (e.g.

�7 lm for carbon fibers), and to the apparent diameter
Fig. 1. Profilometry maps of samples of a polycrystalline

graphite, ablated in laminar (a) and turbulent (b) regime.
of tows, warps, needlings, etc (e.g �300–500 lm for

many composites).

Nonetheless, in turbulent flow conditions, the surface

of the same material displays a ‘‘cellular’’ roughness

(Fig. 1b) with length scales (here, roughly 1 mm) that

cannot be related to the material heterogeneity nor to

turbulent length scales. This kind of ‘‘scalloped’’ surface

is strikingly similar to glacier cave walls. In addition, a

closer look at the fibers in the ablated C/C composite

shown at Fig. 2 reveals other scalloped features on single

composite fibers, this time with a length scale around

10 lm, that are clearly seen in Fig. 3. Again, it cannot

be related to the material heterogeneity; so the explana-

tion of this has to arise from an extrinsic phenomenon.

It will be tried to show that natural length scales aris-

ing from the coupling of transport and heterogeneous
Fig. 3. SEM micrograph of ablation scallops on a C/C

composite fiber.
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reaction are of comparable orders of magnitude, since

other solutions than the trivial flat surface can be pro-

duced from a simple model. Most of the development

presented will be devoted to mass transfer by diffusion,

and heat transfer will be treated by analogy.

It is worthwhile to note that although CVD growth

morphologies are sometimes similar to these ablation

morphologies (though with opposite concavities), they

can not be accounted for with the same kind of model.

In the following part, a diffusion–reaction model will

be recalled; then an evolution equation will be produced

for the surface points. Stationary solutions will be pre-

sented in the case of a growing boundary layer (initial

transient state) and in the case of a constant boundary

layer (steady-state) and some discussions on stability

will be made. Singular points will be next considered,

and a condition for their stability will be worked out.

Numerical simulations will then be presented, which

confirm the steady-state analysis and give an insight into

the transient regimes. Then, an application of the model

will be presented and discussed with respect to the avail-

able experimental facts. Finally, a brief presentation of a

heat-transfer counterpart of the model is given, and the

results are discussed in terms of shape and scale.
2. Model set-up

2.1. Model frame and assumptions

Let us consider a parallelepipedic domain (x, y, z)

containing a part of the fluid, and a part of the solid

(Fig. 4). The interface (or surface) is globally perpendic-

ular to the z direction and may be described by a set of

points (x, y, z) such that S(x, y, z, t) = 0 [11]. Indeed, a

particular case of this general formulation will be used
Solid phase

Fluid phase

z = 0 

z = η(t) 

z
x

h (x,t) 

J

Rn

θ

ϕ

Fig. 4. Domain and notations for the model.
frequently, when S may be explicited under the form

S = h(x, y, t) � z. The S = 0 condition coincides then

with the definition of a unique height h at which the

interface lies. In this case, S has the dimension of a

length; however, other choices are possible for such a

‘‘potential’’ function: for example, the local proportion

of solid could be an acceptable candidate for S, and

the formulation would be a VOF (Volume of Fluid) for-

mulation [12]. The fluid lies in the upper part of the

domain, with z pointing downwards. The height of the

diffusion path h is assumed to have an order of magni-

tude at least comparable to the roughness characteristic

length. The (x, y) extension of the domain may be much

larger than the z extension. If needed, periodic boundary

conditions may be defined in the x and y directions. See

Fig. 4 for a 2D scheme. For most purposes of this work,

only two dimensions of space will be needed.

The fluid transfer will be limited to pure diffusion. The

chemical reactants will be considered as having a fixed,

prescribed concentration either at the top of the domain

(z = 0) or at a given height z = g(t), and diffusing down-

wards, while the species created by the ablation process

diffuse upwards and their concentration at the upper

boundary will be held at zero value. This represents

indeed the fact that convection is non-negligible outside

of the studied domain, and that h is also the size of the

diffusive boundary layer D/vconv. Two physical cases in

which this is a valid assumption may be quoted:

(1) In real reentry conditions, the height of this

boundary layer is very small since the convective

velocity is extremely high; however, a stagnation

point has to exist at the top of the reentering

object, with moderate convection in its vicinity.

In such a region, the size of the diffusive layer

may be larger.

(2) In laboratory experiments, the convective velocity

is moderate—and even low—at some parts of

the ablated sample, especially in ‘‘stop-point’’

configurations.

It is not yet possible to perform full calculations fea-

turing the whole physics of atmospheric reentry (i.e.

including turbulence with Kolmogorov scale around

10 lm) and covering a typical macroscopic cell (size �
1 cm). These two length scales are such that any DNS

simulation is not feasible; and since no data is available

on the precise effect of surface roughness on turbulence,

it is not possible either to perform LES simulations.

Nonetheless, experimental evidence shows that the sur-

face morphology is not very different below the stagna-

tion point (for which it is acceptable to neglect

convection) and at the rear part of the reentering body

(with Mach numbers superior to one outside the viscous

boundary layer). This suggests that a first approach not

featuring convection may have some interest. Stefan
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flux, that is, the normal mass flux entering the gas phase

at the wall, will be neglected for two reasons:

(1) In many practical cases, it may be considered that

the gaseous molecules involved in reaction and/or

sublimation are diluted in a carrier gas.

(2) An experimental study of the modification of heat

transfer under the effect of gas blowing from a

porous substrate [13] shows that the transfer rate

is altered by at most 10% when realistic values

for the blowing/input fluxes are chosen. If Lewis

and Prandtl numbers are close to unity, it is

straightforward to extend this result to mass

transfer, that is: Stefan flux alters by less than

10% the total flux amount in any case of interest.

We may thus neglect it safely in a first approach.

The fluid domain will be considered as isobaric and

isothermal. This is not a strong assumption in the case

of a small domain height; the converse case will be stud-

ied in another paper. As a consequence, the transport

and reaction properties will be considered constant

throughout the domain.

Curvature and surface diffusion effects will be

neglected at first in this approach, although they are

known to have important effects in CVD. However, it

will be seen that they may only be seen as second-

order corrections to the principal results of the present

study.

2.2. Surface evolution

The surface having a local normal velocity v, its time

and space evolution obeys the following equation at all

points where S is differentiable [11]:

oS
ot

þ v � rS ¼ 0 ð1Þ

This equation only means that in a local coordinate

frame moving with velocity v, the implicit equation

defining the surface is preserved. The expression of the

velocity relies on the ablation phenomenon; thus, it

depends on the ablation molar rate R. Its expression

follows from a simple mass balance equation:

v ¼ vsRn ð2Þ
Table 1

Balance equations, stoichiometric coefficients, and boundary conditio

Type Balance ms

1 Oxidation C(s) + O2(g)! 2CO(g) �1

2 Sublimation nC(s) � Cn(g) �n

3 Deposition CnHmðgÞ ! nCðsÞ þ m
2
H2ðgÞ +n

Comparison with CVD.
where vs is the solid molar volume and the normal vector

is defined as:

n ¼ rS
krSk ð3Þ

By convention, it will be pointing towards the fluid;

as a consequence, the quantity S will be larger in the

fluid than in the solid. The ablation molar rate may be

related to the impinging mole flux J:

R ¼ ms
mg

� �
J � n ð4Þ

where the term between parentheses represents the

stoichiometric ratio of ablated solid with respect to the

gaseous species. For a chemical reaction (or a phase

change) noted
P

imiAi ¼ 0, the stoichiometric coefficients

mi will be counted negative for the reactants and positive

for the products. They are detailed at Table 1. Two cases

are distinguished: (i) a first-order reaction with an etch-

ing species, like O2 for example, and (ii) spontaneous

sublimation. The case of CVD is given as a comparison.

Collecting Eqs. (1), (2) and (4) together, one has the

following equation for S(x, y, z, t):

oS
ot

¼ �vs
ms
mg

� �
ðJ � rSÞ ð5Þ

Under the considered approximations, the gas mole flux

is given by Fick�s first law:

0 ¼ Jþ DrC ð6Þ

and the mass conservation in the gas phase reads:

oC
ot

¼ �r � J ð7Þ

Let us now define a reference height h0. This may be for

instance the size of a diffusion boundary layer, resulting

from the interaction of ablation and of an outer tangent

gas stream. Let also C0 be a reference gas-phase concen-

tration. The variables may be scaled in the following

form:

x ¼ h0~x C ¼ C0
eC S ¼ h0eS

r ¼ h�1
0

~r t ¼ h20
DC0vs

~t J ¼ DC0

h0
eJ ð8Þ
ns for two causes of ablation

mg BC at top BC at interface

�1 C(z = g) = 1 J Æ n = mgkC
+1 C(z = g) = 0 J � n ¼ mgðahci=4ÞðC � CÞ
�1 C(z = g) = 1 J Æ n = mgkC



1 This coefficient is not a sticking probability but is very close

to it, when its value is small compared to 1 [15].
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Then, the equations to solve are:

ðvsC0Þ
oeC
o~t

¼ � ~r � eJ
0 ¼ eJ þ ~reC
oeS
o~t

¼ � ms
mg

� �eJ � ~reS

8>>>>><>>>>>:
ð9Þ

Since the dimensionless group vsC0 (the condensation

ratio) is a small quantity, the first term in the first equa-

tion may be considered as zero—that is, gas diffusion

being rapid with respect to surface evolution, it can be

considered in steady-state. Dropping out all tildes for

sake of simplicity, one now has the following set of

equations:

r2C ¼ 0
oS
ot

¼ þ ms
mg

� �
rC � rS

8<: ð10Þ

subject to boundary conditions sets which are linked to

the precise nature of the reaction or change of state.

2.3. Boundary conditions and mass sources

The boundary conditions are listed at Table 1. Two

limiting cases are considered. Indeed, it is well known

that carbon loss in atmospheric reentry arises principally

from two phenomena: (i) oxidation or similar reaction

(with nitrogen for example), and (ii) carbon sublimation.

The first case may have complicated kinetic laws, the

apparent order of which ranges usually between 0 and

1 [14]. The limiting case of first-order wall reaction will

be dealt with first; in a second time, a local equilibrium

model, applicable either to sublimation or to a weak

chemical reaction, will be presented.

For a first-order irreversible reaction, it is considered

that the concentration is held fixed at a constant value

C0—which is used as a reference for dimensionless quan-

tities—at the boundary layer top, which lies at some

height g(t), and is considered as flat.

The boundary conditions are:

Cðz ¼ gÞ ¼ 1

�rC � rS ¼ mgDakrSkC at S ¼ 0

�
ð11Þ

where the Damköhler number has been introduced:

Da ¼ kh0
D , with k being a first-order heterogeneous reac-

tion constant in m s�1. The stoichiometric coefficients

ms and mg are both negative in the case of oxidation.

For example, for the reaction

CðsÞ þ CO2ðgÞ ! 2COðgÞ
we have mg = m(CO2) = ms = �1. The CVD reaction

CH4ðgÞ ! CðsÞ þ 2H2ðgÞ

yields ms = + 1 and mg = �1.

In the case of sublimation, the species partial pressure

is supposed to be zero at the upper limit of the domain.
The net sublimation mole flux (in a direction normal to

the wall) is given by the Knudsen–Langmuir relation-

ship [15] in dimensional form:

J � n ¼ cð�p � pÞ ð12Þ

where �p is the equilibrium partial pressure and:

c ¼ a
4

1

RT

ffiffiffiffiffiffiffiffiffiffi
8RT
pM

r
ð13Þ

Here, a is a sticking coefficient.1 The term in square root

is the root mean square molecular velocity hci ¼
ffiffiffiffiffiffiffi
8RT
pM

q
.

By comparison with the preceding case, and replac-

ing the partial pressure p by CRT from the perfect gas

law, the sublimation flux is rewritten:

J � n ¼ kðC � CÞ ð14Þ

where it has been possible to define an ‘‘equivalent ki-

netic constant’’:

k ¼ a
4
hci ð15Þ

Summarizing in dimensionless form, one has:

Cðz ¼ gÞ ¼ 0

�rC � rS ¼ mgDakrSkð1� CÞ at S ¼ 0

�
ð16Þ

In such a case, the stoichiometric coefficients are such

that mg is positive while ms is negative. For example,

3CðsÞ ! C3ðgÞ

gives ms = �3 and mg = + 1. In Eqs. (16) it is assumed that

the reference concentration C0 is the equilibrium gas

concentration C obtained from the Clausius–Clapeyron

relation.

2.4. Surface height as a function of the abscissa

Now if the surface is such that z can be solved

unequivocally out of S(x, y, z, t) = 0, that is, if:

Sðx; y; z; tÞ ¼ 0 ¼ hðx; y; tÞ � z ð17Þ

then the evolution Eq. (5) for S may be rewritten for the

height h of the surface:

oh
ot

þ ms
mg

� �
Jx

oh
ox

þ J y
oh
oy

� Jz

� �
¼ 0 ð18Þ

The normal vector is:

n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s oh=ox

oh=oy

�1

0B@
1CA ð19Þ
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and points towards the fluid. The normal flux is then:

J � n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s Jx

oh
ox

þ Jy
oh
oy

� Jz

� �

ð20Þ
The boundary conditions (11) and (16) rewrite then:

Cðz ¼ gÞ ¼ 1

Jx
oh
ox

þ Jy
oh
oy

� J z

� �

¼ mgDa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s

C at S ¼ 0

8>>>>>><>>>>>>:
ð21Þ

and

Cðz ¼ gÞ ¼ 0

Jx
oh
ox

þ Jy
oh
oy

� J z

� �

¼ mgDa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s

ð1� CÞ at S ¼ 0

8>>>>>><>>>>>>:
ð22Þ
2.5. Vertical flux approximation

Let us now consider that the gaseous mole flux is ver-

tical, that is, jJxj � jJzj and jJyj � jJzj. In such a case, it

is possible to reduce the system to only one equation,

provided that the surface is not too steep, that is:

oh
oi

���� ����� Jz

J i

���� ����; i ¼ x; y ð23Þ

For instance, if one chooses a slope 100 times inferior

to a Jz
J i

��� ��� ratio, and a value of 100 for such a ratio, one

obtains a critical surface inclination of 45�.
From Fick�s laws, it appears that Jz is a constant:

Jz ¼ �CðzÞ � CðgÞ
z� g

¼ constant 8x; y; z ð24Þ

and that C(x, y, z) = Jzz + constant. The boundary con-

ditions (21) rewrite:

CðgÞ ¼ 1

CðhÞ � 1 ¼ mgðh� gÞ �Da �CðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s8><>:

ð25Þ
The concentration at the interface is then:

CðhÞ ¼ 1

1� ðh� gÞmgDa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s ð26Þ

Substituting back into Eqs. (18)–(21), one arrives at the

following equation for h at the interface (z = h):
oh
ot

¼ ms
mg

� �
1

h� g� 1

mgDa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s ð27Þ

Or, letting h 0 = h � g and mg = ms = �1:

oh0

ot
¼ 1

h0 þ 1

Da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh0

ox

� �2

þ oh0

oy

� �2
s � dg

dt
ð28Þ

However, dg/dtmay be viewed as a mean ablation veloc-

ity, so it is interesting to extract from Eq. (28) the local

information. Choosing a reference frame with origin at

z = g and moving with velocity dg/dt (i.e. x 0 = x � tdg/
dt; t 0 = t), one has:

oh0

ot0
¼ h0 þ Da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh0

ox0

� �2

þ oh0

oy0

� �2
s0@ 1A�10@ 1A�1

ð29Þ

This is a Hamilton–Jacobi equation for h 0. In the case of

sublimation, things are similar. The boundary condi-

tions (22) may be rewritten:

CðgÞ¼ 0

CðhÞ�1¼ mgðh�gÞ �Da � ð1�CðhÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2

þ oh
oy

� �2
s8><>:

ð30Þ
Making the same algebra as in the preceding case leads

to the same equation as Eq. (29) but with a reversed

sign; however, the stoichiometric ratio is now negative,

so the result is:

oh0

ot0
¼ ms

mg

���� ���� h0 þ jmgjDa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh0

ox0

� �2

þ oh0

oy0

� �2
s0@ 1A�10@ 1A�1

ð31Þ
and is formally equal to the preceding one.

The obtained equation differs from previously pro-

posed equations [8,9] for several reasons:

• The vertical flux inEq. (9) is not treated as an externally

provided constant, but as dependent on the boundary

layer height h and on the interface concentration

C(h), which has indeed to be done in the case where

neither diffusion nor reaction overcomes on each other;

• The variation of the kinetic constant k with the local

curvature has been neglected;

• The effect of surface diffusion, also sensitive to curva-

ture, has been neglected.
3. Stationary profiles and velocities

Eq. (29) is indeed a Hamilton–Jacobi equation, for

which ‘‘stationary solutions’’ means solutions with a



3394 G. Duffa et al. / International Journal of Heat and Mass Transfer 48 (2005) 3387–3401
fixed velocity in global frame, or with null velocity in

local frame with respect to dg/dt.
Two distinct methods will be presented for the

derivation of such solutions. First, a global criterion,

based on the existence of a ‘‘prime integral’’ is used.

Second, a local criterion based on the time stability of

the slope (or the equality of the velocity for all points)

will be used.

3.1. Global (geometrical) method

Let us introduce the angle u such that J � n ¼
kJkknk cosu. Since we are in the hypothesis that J is

strictly vertical, then:

cosu ¼ �knk�1

¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh0

ox0

� �2

þ oh0

oy0

� �2
s0@ 1A�1

ð32Þ

In two dimensions, that is, dropping out the y coor-

dinate, from Fig. 4 it is easy to see that h ¼ p� u ¼
arctan oh0

ox is the angle between the slope of the interface

and the horizontal axis. Introducing this angle into Eq.

(28) yields in fixed coordinates:

oh0

ot
¼ h0 þ cos h

Da

� ��1

� og
ot

ð33Þ

where cosh is positive, i.e. h 2 (�p/2; p/2).
Then, stationarity of the interface oh0

ot ¼ 0
� �

implies

conservation of the quantity:

h0 þ Da�1 cos h ¼ 1=V ð34Þ

where V ¼ og
ot is the global velocity.

A trivial solution is h = 0 everywhere, that is, a flat

interface. A natural choice for the reference length h0
is then such that h 0 = 1 when cosh = 1, i.e. at the surface.

The velocity is then V ¼ Da
1þDa, that is, turning back to

dimensional quantities:

dg
dt

¼ 1

Daþ 1
� ms
mg

� ðvsC0Þ � k ð35Þ

This choice for characteristic dimensions will be retained

also in the following.

On the other hand, since oh0

ox ¼ tan h, using a chain

derivation rule, one obtains that ox
oh ¼ �Da�1 cos h. Then,

by integration, x ¼ x0 þ Da�1 sin h, and the solution is

thus a circle arc with center at (x0, 1, �1/Da) and radius

1/Da:

h0 ¼ 1þ Da�1ð1� cos hÞ
x ¼ x0 þ Da�1 sin h

(
ð36Þ

Since cosh is positive, only the circle arc with a center

lying in the fluid is correct. When h = 0, that is, for a
point with null slope, the velocity is equal to the flat-sur-

face value, but is also equal to the velocity of the other

points; thus, the circle-arc solution has the same velocity

as the flat one.

The analytic form of the solution is, in the moving

coordinate frame:

h0ðxÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðx� x0Þ2

q
þ h0 þ 1 ð37Þ

It is obvious that an interface with indefinite x extension

cannot be obtained from continuous solutions of Eq.

(28). This issue is readily dealt with, considering that a

solid surface does not have to be smooth everywhere: it

just has to be continuous. We will address further this

point at next section; however, a glance at Fig. 6 helps

to understand the shape of a particular, non-trivial

solution.

3.2. Local criterion

Another way of working out stationary solutions is

to consider directly Eq. (28) (neglecting the y coordinate

for simplicity), derive it with respect to x, and equal the

result to zero, which means that the slope does not vary

with time and that the time evolution for all points is the

same:

o
2h

otox
¼ 0 ¼ � oh

ot

� �2
oh
ox

� �
ð1þ Da�1jÞ ð38Þ

where j is the curvature:

j ¼ � o2h=ox2

ð1þ ðoh=oxÞ2Þ3=2
ð39Þ

Stationarity of the profile is thus equivalent to having a

constant curvature equal to �Da, i.e. a circle arc with a

center lying in the fluid and radius 1/Da. This is exactly

the same result as before.

3.3. Singular points

As it stands clear from Fig. 1b, a description of the

surface involving singular points seems to make enough

sense. Moreover, the result of the preceding section is

that a stationary continuous surface may be a circle

arc; thus, an interface with a large lateral extension

may be described as a collection of circle arcs, at the

expense of the existence of a certain number of singular

points. Let us assume that there exists an enumerable

quantity of such points (in practice it will be a finite

quantity), then, since the surface is continuous, it is pos-

sible to define for every point of it a left-hand slope and

a right-hand slope:

tan hþðxÞ ¼
oh
on

����n!x
nPx

ð40Þ
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tan h�ðxÞ ¼
oh
on

����n!x
n6x

ð41Þ

The solid mass balance Eq. (33) gives now two equali-

ties, one for each ‘‘half-slope’’:

oh0

ot
¼ h0 þ cos hþ

Da

� ��1

¼ h0 þ cos h�
Da

� ��1

ð42Þ

From these relations, it is readily seen that two kinds of

points may exist:

• h+ = h�, that is, the surface is continuous at x;

• h+ = p � h�, that is, there exists a singular point, and

the curve is locally symmetrical with respect to a ver-

tical axis at x.

It is also straightforward to see from the conservation

relation (34) that all circle arcs have to display the same

curvature if the material is homogeneous. Fig. 5 is a

sketch of a typical possible solution, for which (i) the lin-
Fig. 6. Representation of the concentration field for the non-

trivial solution of the ablation profile (Fig. 5).

unstable edge

Fig. 5. Representation of a possible steady, non-trivial solution

of the ablation profile in isothermal vertical flux approximation.
ear density of singular points is OðDaÞ, and (ii) most of

the circle arcs contain a point with h = 0. An exception

to statement (ii) is shown as a grey-filled circle: it is a

reentrant singularity. It will be shown in a later section

that such a singularity is not likely to be realized in

practice.

Indeed, the experimentally observed patterns are

such that the properties mentioned above hold. Why is

it so? Some qualitative arguments may be exposed. First,

the linear density of singular points has to be superior or

equal to (2Da)�1, since the individual circle arc defini-

tion range is at most 2Da. Second, if the linear density

is much superior to Da�1, then the curve becomes appar-

ently smoother (i.e. the peak-to-valley parameter [2,4]

diminishes strongly).

Phenomena that have not been taken into account,

like surface diffusion, curvature-induced reactivity ex-

cess, or—more probably—thermal effects and deviation

from the verticality of the diffusion fluxes, etc. . . are be-
lieved to smooth locally the surface and transform a sin-

gular point into a region with finite but strong curvature

and width k � Da. The presented model is thus not

applicable when the density of singular points becomes

comparable or superior to k�1.
4. Profile stability discussion

This discussion will be split in two distinct parts: first,

the smooth parts of the solution curves are studied

through a standard perturbation calculus. Then, the sta-

bility of singular points will be treated using Huyghens�
principle [11,16].

4.1. Continuous parts of the surface

A standard stability analysis may be performed on

the 2D stationary profile solutions z ¼ �hðx; tÞ, by intro-

ducing perturbations of C and h:

DC ¼ C � C ¼ dC expðxCt þ kC;xxþ kC;zzÞ
Dh ¼ h� �h ¼ dh expðxht þ kh;xxÞ

ð43Þ

The time and space pulsations xi and ki will be related

by dispersion relations, after having checked their

interdependency. Introducing the perturbation DC into

Fick�s second law yields:

k2C;x þ k2C;z ¼ ðvsC0ÞxC � 0 ð44Þ

A correct choice for a perturbation should be with a

decreasing amplitude for decreasing h � z, so that

kC,z should be real and positive. As a consequence,

kC,x = � ±jkC,z is purely imaginary, i.e. the perturbation

is periodic in x direction. Using now Eq. (18) yields:

xhDh ¼ ð�hxkC;x � kC;zÞDC ð45Þ



Fig. 7. Polar plot of normal velocity v and velocity of an

interface point W. For this plot, h = 1 and Da = 1.
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where �hx ¼ �o�h=ox is a short notation for the local

slope. This result, valid for all x, implies that DC and

Dh do have equal space periods:

kh;x ¼ kC;x ¼ kx
kC;z ¼ kz

ð46Þ

On the other hand, making use of Eqs. (21) or (22) gives:

�Cz 1� kx
�hx

Dað1þ �h
2

xÞ
3=2

 !
Dh

¼ 1þ kx � kx�hx

Da
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �h

2

x

q
0B@

1CADC ð47Þ

Combining together Eqs. (44)–(47) and setting �hx ¼
cos h yields finally the following dispersion relation:

xh ¼ � ð�CzÞkz
1þ kz

Da

� �2 þ 2 kz
Da

� �
cos h

� � � ð48Þ

� � � 1þ kz
Da

� �
cos h cos2hþ tan2h

� �� 	
� � �

�
� � � � j tan hþ kz

Da

� �
cos h sin h cos hþ kz

Da

� �� �� 	

ð49Þ

Remembering that cosh, �Cz, and kz are positive, one

finds that ReðxhÞ is always negative, which means that

any perturbation decreases, no matter what the local

slope is. Both solutions, the flat and the curved one,

are stable.

Such an analysis would have to be modified in the

presence of curvature effects, since they have been

proved to destabilize CVD growth processes.

4.2. Stability of singular points: Hamilton–Jacobi analysis

4.2.1. Displacement of individual points of the interface

Consider the evolution of a surface in the case of oxi-

dation (mg = ms = �1), in vertical flux approximation.

To simplify notations, we will drop the primes corre-

sponding to the moving coordinate frame. The local

normal velocity v writes:

v ¼ �DaCðhÞn ¼ �Da � 1

1þ hDa
cos h

n ð50Þ

The vector v is plotted at Fig. 7 for all possible values of

h. Even though v is the local normal velocity of the sur-

face, we will see that, for a point M of the surface,

W ¼ dM
dt 6¼ v.

Since v and n are collinear, it will be practical to de-

fine the quantity:

q ¼ v � n ¼ �kvk ¼ � Da

1þ hDa
cos h

ð51Þ
and rewrite Eq. (5) under a Hamilton–Jacobi form:

oS
ot

þ qkrSk ¼ oS
ot

þH ¼ 0 ð52Þ

If we suppose v to be differentiable, then the associated

characteristic system is:

dxi
dt

¼ oH

oðSxiÞ
ð53Þ

dðSxiÞ
dt

¼ �oH

oxi
ð54Þ

with xi = x, y, z. After some algebra, Eq. (53) may be

rewritten in vector form:

dM

dt
¼ W ¼ rnq� ðrnq � nÞnþ v ð55Þ

¼ ðn ^ rnqÞ ^ nþ v ð56Þ

where rn ¼ o
on

is the (formal) derivative with respect to

the local normal components. To illustrate the calculus,

we consider the 2D case. In our application, with

n = t(sinh; cosh), one obtains:

Wx ¼ q sin hþ oq
oh

� cos h

Wz ¼ q cos hþ oq
oh

� sin h

8>><>>: ð57Þ
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which gives, using Eq. (51):

Wx ¼ �Da
cos2h sin h

ðcos hþ hDaÞ2

Wz ¼ �Da
cos3hþ hDa

ðcos hþ hDaÞ2

8>>><>>>: ð58Þ

The graph of W, noted CW, is also presented at Fig. 7.

This figure indicates that this graph may be constructed

as the envelope of the set of lines defined by:

M � n ¼ x sin hþ y cos h ¼ qðhÞ ð59Þ

One notes that CW shows three singular points. The first

one lies at the bottom of the graph, for h ¼ � p
2
, and the

other ones are for h0 verifying:

cos3h0 � 2hDaþ 3hDacos2h0 ¼ 0 ð60Þ

As shown at Fig. 8, this angle belongs to the interval

[hlim; p/2], where hlim ¼ arccosð
ffiffiffiffiffiffiffiffi
2=3

p
Þ � 35�440, a value

inferior to the angle domain corresponding to the verti-

cal flux approximation.

4.2.2. Application of Huygens’ principle to the

evolution of singular points

The principle of the approach has been described in

details in [11,16]. By analogy with the propagation of

electromagnetic waves, the surface is assimilated to a

wavefront, and it is stated that each point of the wave-

front is a source of a secondary wave called Huygens

wavelet. The evolving wavefront is defined as the com-

mon envelope of the wavelets. In the present case, the

wavelets have no frequency (or an infinite one), so there

is no phenomenon of interference, as in the electromag-

netic application case.

Now, Huygens wavelets have to be defined. Contin-

uing the analogy, one says that the wavelet is an elemen-

tary wavefront which is the locus of the points reachable

by a source after a short time increment dt. This defini-
Fig. 8. Critical angle h0 vs. h Æ Da.
tion is equivalent to the approach described in section

4.2.

So, the Huygens wavelet is the locus of the points de-

fined by the vectorial Eq. (56). The evolved surface is

then obtained as the common tangent envelope of the

wavelets created by every point. An example of con-

struction is given at Fig. 9.

For a local study, it will be considered that h and Da

are fixed values, so that the Huyghens wavelet is of fixed

size and shape in the vicinity of the studied point. Thus,

applying the construction rules allows to discuss the sta-

bility of edges in the (h�, h+) plane, as illustrated at Fig.

10. It is possible to classify the singular points into four

types, depending on the behavior:

• Type I is a ‘‘sharp’’ reentrant edge, i.e. with two sides

such as jhij > h0. Its evolution leads to a smooth curve

and two singular points noted S 0 on the scheme. Note

that those evolved points are not of type I, so that

type I edges are not stable.

• Type II is associated with reentrant edges with

jhij > h0 on one side only. A piece of smooth curve

appears, and an evolved singular point S 0 is present.

They may be considered as stable because the singu-

lar point is conserved.

• Type III edges are edges with small slopes: they

evolve into smooth curves.

• Type IV edges are stable edges, marked with an S on

the figure: among them, one finds all salient edges.

The only edges which are present in a stationary

curve are symmetrical edges, represented by the second

diagonal of the (h�, h+) plane. By inspection of Fig. 10

it is easy to see that:

• Symmetrical type IV (salient) edges are stable;

• Symmetrical type III edges are not stable and trans-

form themselves into pieces of smooth curves;
Fig. 9. Example of construction for a surface.
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• Symmetrical type I edges are not stable: they split

into two unsymmetrical type II edges which later

on are prone to transform themselves into something

else.

Accordingly, this confirms the fact that a stationary

surface does not contain in practice any reentrant edge.
5. Asymptotic limits

It is easy to identify from the Da ! 0 and Da !1
limits, the two asymptotic regimes that may be reached

from the presented model. In the case of diffusion-lim-

ited ablation (Da !1), Eq. (28) becomes:

oh0

ot
¼ 1

h0
� dg

dt
ð61Þ

from which the classical results on diffusion-limited etch-

ing or growth are recovered: the interface is flat, and its

velocity is not steady, unless ht becomes large. Consider-

ing dg
dt ¼ 0, there is a parabolic law h

02 = h 0(0)2 + t.

The converse case makes the chosen reference time

unusable, and one has to set t�0 ¼ Dat0 ¼ h0
kðC0vsÞ

. Note

that h0 is not any more a diffusion layer thickness. In-

deed, the surface evolution does not depend any more

on the distance to the chemical source.
Eq. (28) then becomes:

oh0

ot�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh0

ox

� �2

þ oh0

oy

� �2
s

� dg
dt�

ð62Þ

Considering again dg
dt ¼ 0, one faces now a classical

Hamilton–Jacobi equation, the solutions of which have

been the object of a broad literature.
6. Transient simulations

The evolution equation for S (Eqs. (10) and (11)) has

been studied by a direct numerical integration. However,

such an equation was obtained at first for a regular sur-

face, and it has been seen that this was not necessarily

the case. Moreover, in a discretized surface, every point

can be singular, even if the continuous expression is dif-

ferentiable. An explicit numerical scheme has been de-

signed, using a discretized surface and applying Eq.

(56) to find the position of the evolved points and con-

struct the new surface.

Once the surface is discretized, all points become sin-

gular. Their evolution, in the limit of locally constant h

and Da parameters, is summarized at Fig. 10; rules for

the numerical scheme may be deduced from it.

The algorithm of surface construction is built as

follows:

Step 1: Discretization of the initial surface. Let dx be a

regular space increment and (i, j) the discretized

variables corresponding to (x,t). The discret-

ized surface is a set of points Mj
i ¼ tðxji ; zjiÞ.

To each segment ðRj
i Þ ¼ ½Mj

i�1;M
j
i 	 is associated

hji , the angle between the normal and the verti-

cal axis.

Step 2: Evolution of adjacent segments. At the time

increment j, the point Mj
i is surrounded by

two segments ðRj
iÞ and ðRj

iþ1Þ. As seen before,

the evolved segments will obey to the following

equations:

Rjþ1
i

� �
: sinðhji Þðx� xji Þ þ cosðhji Þðz� zjiÞ
¼ WnðhjiÞ � ndt ð63Þ

Rjþ1
iþ1

� �
: sinðhjiþ1Þxþ cosðhjiþ1Þz� c2

¼ Wnðhjiþ1Þ � dt ð64Þ

where c1 ¼ sinðhji Þx
j
i þ cosðhji Þz

j
i , and c2 ¼ sinðhjiþ1Þx

j
i þ

cosðhjiþ1Þz
j
i .

The evolution of a type IV edge is given by the simple

intersection of the evolved segments. For a type I, II or

III edge, the evolution is given by the intersection of the

evolved segments and the locus of points defined by W

as seen in Fig. 10).
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Step 3: Reconstruction. Once the evolved surface has

been built, there remains to choose new

points O(i, j + 1) to represent it. In order to

avoid point merging, we take xji ¼ xi constant
"j.

With such a choice, we have:

• For a type II edge:

– if hji > hjiþ1; zjþ1
i is given by the Eq. (64) with

x = xi;

– if hji < hji ; zjþ1
i is given by the Eq. (63) with x = xi;
• For a type I or III edge: zjþ1
i ¼ Wzðh ¼ 0Þ;

• For a type IV edge:

– if hji > hjiþ1; zjþ1
i is given by the Eq. (63) with

x � xi;

– if hji < hjiþ1; zjþ1
i is given by the Eq. (64) with

x = xi.
One of the most interesting points is to find out in

what kind of situation a stationary solution made of

circle arcs appears. An example is illustrated at Fig.

11: an initial condition has been taken with an ‘‘inverse’’

profile, that is, with symmetrical singular points point-

ing towards the solid instead of the fluid, also featuring

a curvature superior to the opposite of the stationary

curvature. It is seen that relaxation towards the station-

ary ‘‘circle-arcs’’ solution occurs within a few dimen-

sionless time units, with two phenomena: (i) the

smooth arcs increase curvature, and a singular point ap-

pears, which then relaxes towards the stationary situa-

tion, and (ii) the angle at the initial singular point

(type I) diminishes rapidly and a smooth circle arc even-

tually appears.
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Fig. 11. An example of transient behavior, starting from an

‘‘inverted curvature’’ initial solution.
7. Application case: onset of cellular roughness from

sublimation

A numerical evaluation of the curvature radius

Da�1h0 = D/k can be made, taking typical values of

plasma jet conditions, such that the surface temperature

is about 4300 K and the pressure approximately 5 MPa.

In such conditions, the major carbon-containing species

is C3 [1]. The value of the sticking coefficient is known

experimentally [17,18]: a ’ 0.028. It is considered that,

even if the flow is turbulent, there exists a thin layer close

to the wall where laminar flow occurs; this layer has to

be traversed by the gaseous species, so the diffusion coef-

ficient in laminar flow is the critical transport property.

Its value can be estimated by the classical theory of

Chapman–Enskog [19], provided the parameters of

interaction. Here the data of [20] has been chosen: a

Lennard-Jones potential (r = 0.445 nm and �
kB
¼ 128

K). These values lead to a diffusion coefficient D =

0.026 cm2 s�1. Then the resulting value for the curvature

radius is about 3 lm. This value scales reasonably with

the features of Fig. 3, provided the large uncertainty

on the sticking coefficient. In fact, measuring this scale

can be a way to have an indirect assessment of a.
A remark has to be done about such a scale. If the

heat flux is strongly varied, the fact that sublimation is

the main ablation cause renders it ‘‘robust’’, because flux

variations will primarily lead to changes in sublimation

flux, but not in surface temperature; since D/k is mainly

a function of T, it will not vary strongly when the heat

flux varies.

It is also straightforward to evaluate the possible

importance of curvature effects, as depicted in [8,9].

The correction that has to be added to the source term

is:

R0 ¼ Rð1þ CjÞ ð65Þ

where j is the curvature and C ¼ cfsvs
RT is the length scale

for the correction. Such a C factor ranges between 10�10

and 10�8 m depending on the chosen value for the sur-

face tension of carbon. It is thus clear that the curvature

correction is negligible in the presented case.

Now a question remains: if the identified scale is

micrometric, how to explain the millimeter-scale features

of Fig. 1b? An answer, at least partial, may arise from

the consideration of heat transfer by diffusion.
8. Thermal conduction scalloping

Let us now consider that the transported quantity

that brings a rate limitation is temperature instead of

gas species mass. We are working now at a length scale

that is superior to the mass-transfer boundary layer, and

may consider that there is an effective rate constant
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Fig. 12. Dimensionless plot of an ablation scallop from the

heat-transfer model.
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k� ¼ R=C0 ¼ ðk�1 þ h0D�1Þ�1

that incorporates the effect of gas diffusion through this

layer. On the other hand, it will be assumed that k* de-

pends on T through, for example, an Arrhenius law.

Summarizing, the reaction rate is written under the

form:

R ¼ k�C0 ¼ A exp � Ea

RT

� �
C0 ð66Þ

By analogy with the mass transfer case, it will be consid-

ered that the temperature is held constant at a certain

height:

T ðz ¼ gÞ ¼ T 0

Applying again the hypothesis of vertical flux approxi-

mation, the heat flux is given by:

qz ¼ � k
h0
ðT ðz ¼ hÞ � T 0Þ ð67Þ

In addition to this, let us assume that there is a constant,

known, vertical heat flux at the top of the thermal

boundary layer qz(z = g) = q0, and that the thermal con-

ductivity is not a function of temperature (indeed, it

depends on temperature much less than the reaction

rate). Then, the temperature will be a simple function

of h 0:

T ðh0Þ ¼ T 0 �
q0
k
h0 ð68Þ

On the other hand, recalling Eqs. (1)–(3), (17) as well as

the definition of h, one has:

V ¼ oh
ot

¼ RðT ðhðxÞÞÞ cos h ð69Þ

The stationarity of the profile implies, as before, that the

velocity is independent of the x coordinate. This yields

the following result:

j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ oh

ox

� �2
s oh

ox

� ��1
o lnR
ox

ð70Þ

Making use of Eqs. (68) and (66) finally gives:

j ¼ � Ea

RT ðhðxÞÞ �
q0

kT ðhðxÞÞ cos h ð71Þ

Choosing a reference length h0 ¼ kT 0

q0
gives the following

relation:

~j ¼ �cah
�1
0 ð1� ~h

0Þ�2
cos h ð72Þ

where ca is the scaled activation energy Ea=RT 0. In this

solution, it is found that the curvature radius is not any

more a constant, but a function of the depth h 0. Fig. 12 is

a plot of a numerical evaluation of h 0(x), where it is seen

that the shape differs neatly from the semi-circle in the

region of high slopes. In practice, the dimensionless
depth is no more than 0.1, so that the surface tempera-

ture is 90% of the top fluid temperature.

This suggests that the maximal order of magnitude

for the scallop curvature radius is h0
0.2ca

. Numerical appli-

cation in the case of Fig. 1b is the following: q0 �
10 MWm�2, T0 � 4800 K, k0 � 10 W m�1 K�1, ca �
12. Then r � h0/2.4 � 16 mm. This matches approxi-

mately the observed scale.

Fortunately, the fact that this length scale is much

higher than the preceding one helps to validate the iso-

thermal hypothesis that has been given in the case of

mass diffusional limitations.
9. Conclusion

The question of roughness set-up due to ablation in

atmospheric reentry has been addressed. Apart from

the trivial cause due to the material inhomogeneities, an-

other cause seems to act even in the case of homoge-

neous materials. It is basically a dynamical effect based

on the concurrence between transfer and reaction: when

the surface is higher, the consumption rate is higher, but

when it is more inclined with respect to the principal

transfer direction, the rate is lowered. Thus, points with

different altitudes may well have the same recession

velocity, leading to a rough surface profile.

A simplified, isothermal model featuring the interac-

tion of 1D (normal) diffusion with heterogeneous reac-

tion or sublimation has been built, and it shows that

in the intermediate regime (that is, neither diffusion-lim-

ited nor reaction-limited), cellular roughness may ap-

pear, under the form of a stable surface made of circle

arcs in 2D (and by extension of sphere caps in 3D). Such

a morphology has been indeed found experimentally in

various cases. One of the successes of the presented

model is that it helps understand why a characteristic

length scale, different from the turbulence-related scales,
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appears in ablation, even without any heterogeneity of

the substrate. Also, since this roughness is capable of

being formed in laminar flow conditions, it is a new can-

didate to the explanation of laminar-to-turbulent transi-

tion in the flow regime around the reentry body.

Two length scales have been found for the curvature

radii of the roughness features: the first one, arising from

mass transfer, is much smaller than the second one, aris-

ing from heat transfer. Indeed, both of them are known

experimentally.

Consequences of such a behavior have to be carefully

considered with respect to other experimental results,

and the solidity of the model with respect to addition

of new physical features, such as the curvature-enhanced

chemical reactivity or an explicit coupling between mass,

heat and momentum transfers, has to be tested in future

work. Also, extensions of the simple model to aniso-

tropic and composite surfaces will be treated in other

papers.
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